Распознование лиц с помощью нейронных сетей

Задача

В последнее время вектор развития распознавания лиц вызывает все больше интереса со стороны коммерческого сектора и государства. Однако корректное измерение точности работы таких систем — задача непростая и содержит массу нюансов. К нам постоянно обращаются с запросами на тестирование нашей технологии распознавания и пилотными проектами на ее основе, и мы заметили, что часто возникают вопросы с терминологией и методами тестирования алгоритмов применительно к бизнес-задачам. В результате для решения задачи могут быть выбраны неподходящие инструменты, что приводит к финансовым потерям или недополученной прибыли. 
В настоящее время решение этой проблемы в области разработки и эксплуатации информационных систем различного назначения связано с разработкой всевозможных требований к обеспечению их безопасности и созданием программно-аппаратных средств от несанкционированного доступа.  Задача состоится в том, как работает распознование лиц и каким образом можно использовать эту технологию.


Как работает система распознавания лиц?

В принципе, система распознавания лиц может быть описана как процесс сопоставления лиц, попавших в объектив камеры с базой данных ранее сохраненных и идентифицированных изображений лиц эталонов.
По структурной реализации системы распознавания лиц можно выделить три распространенные схемы.

Анализ видеопотока на сервере

Наиболее распространенная схема реализации — IP-камера передает видеопоток на сервер, на сервере специализированное программное обеспечение для выполняет анализ видеопотока и сравнение полученных из видеопотока изображений лиц, с базой лиц эталонов.

Недостатками такой схемы будут, высокая нагрузка на сеть, высокая стоимость сервера, даже к самому мощному серверу можно подключить ограниченное количество IP-камер, т.е. чем больше система тем больше серверов.
Преимуществом является возможность использовать уже существующую систему видеонаблюдения. 


Анализ видеопотока на IP-камере

В данном случае анализ изображения будет производится на самой камере, а на сервер будут передаваться обработанные метаданные.

Недостатки — нужны специальные камеры, выбор которых в данный момент крайне мал, стоимость камер выше чем обычных. Также в системах разных производителей будет по разному решаться вопрос хранения и размера базы данных распознанных лиц эталонов, а также вопросов взаимодействия софта на камере и софта на сервере.
Преимущества — подключение практически неограниченного количества камер к одному серверу.


Анализ видеопотока на устройстве контроля доступа

В отличии от первых двух схем где используются IP-камеры, в данном случае камера встроена в устройство контроля доступа, которое кроме распознавания лица которое естественно происходит на устройстве, выполняет функции управления доступом как правило через турникет или электрозамок установленный на дверь. База данных лиц эталонов хранится на устройстве, и как правило уже не в виде фотоизображений.

Недостатки — как правило все такие устройства выпускаются для использования в помещениях.
Преимущества — низкая стоимость систем по сравнению с системами видеонаблюдения используемыми для распознавания лиц.

В любом случае успех реализации проектов по распознаванию лиц зависит от трех важных факторов:
• Алгоритм распознавания
• Базы данных распознанных лиц (эталонов)
• Быстродействие алгоритма